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Abstract-The subject of this paper is the buckling behavior of a rectangular plate, with parallel
thin-walled stiffeners attached to one side, subjected to a combination of axial compression, lateral
pressure and bending moment. The plate is modeled by the Von Karman plate equations and the
stiffeners by a nonlinear beam theory recently derived. An analytical solution is obtained for the
buckling load corresponding to a torsional tripping mode of the stiffeners. The effects of various
boundary conditions, imperfections and residual stress are included.

I. INTRODUCTION

Stiffened plates are a basic structural component of ships and submarines. These structures
are designed with generous safety margins against overall collapse triggered by buckling.
The object of analytical work is to determine design criteria to inhibit buckling at any stress
less than yield. Recently [see Danielson et al. (1993)], we have developed an analytical
formula for the buckling load of a stiffened plate subjected to a combination of axial
compression and lateral pressure. The object of the present paper is to improve and extend
our previous analysis. A review of the literature, given in our earlier work, will not be
repeated but details of the analysis, which supersedes our earlier work, will be recorded
here.

We first consider a plate which is initially rectangular in shape and has several parallel
I-stiffeners spaced a distance b apart. The structure is subjected to a combination of uniform
axial compressive stress (J (force per unit area of a side), uniform lateral pressure p (force
per unit lateral area of the plate), and uniform bending moment M (moment per unit length
of an edge). We suppose that at low values of (J, p and M, the plate and stiffeners simply
bend and compress symmetrically. Our object is to find the critical load at which the
stiffened plate may buckle into an alternate mode (see Fig. 1).

Our present analysis is based on the following simplifying assumptions.

(i) Each plate-stiffener unit of width b undergoes an identical deformation.
(ii) The plate obeys the nonlinear Von Karman plate equations [see Timoshenko

and Gere (1961)]. The stiffeners obey the nonlinear beam equations derived by
Danielson and Hodges (1988).

(iii) The plate and stiffener material is elastic, linear and isotropic.
(iv) Every particle on the bottom surface of a beam undergoes the same displacement

as the corresponding particle on the top surface of the plate, and every line of
particles in the beams normal to the plate surface remains normal to the deformed
plate at its surface, In other words, the bases of the stiffeners are clamped to the
plate.

(v) The prebuckling displacements are less than the maximum thickness of the
structure and independent of the transverse coordinate.

(vi) The incremental buckling extensional strains at the midsurface of the plate are
negligible.

(vii) The incremental buckling displacements may be approximated by the fun­
damental harmonic in their Fourier expansions.
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I--unit of width b---.l

unit of width b

Fig. I. Stiffened plate, loading applied and buckling mode.

(viii) The plate and beams are so thin that their thicknesses are negligible compared
to their width, height, length, and the wavelength of deformation. A stiffener is
so slender that its width and height are negligible compared to its length and the
wavelength of deformation.

2. GENERAL POTENTIAL ENERGY FUNCTIONAL

It follows from assumption (i) that we need only analyse a single plate unit containing
a single stiffener. From assumptions (ii)-(iii), the potential energy of the plate plus beam is
given by

[
WTl wL 0 ] }+D T+VWIIW22+T+(l-V)W12 +atu,-pw+Mw" dx,dx2

Here (x" X2, X3) are Cartesian coordinates measured from the midpoint of a side of the
plate. The plate unit has length a, width b, and thickness t, while the beam has cross­
sectional area A and centroidal height c. The elastic constants are defined by
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E
G=--­

2(1 +v)

where E is the Young modulus and v is the Poisson ratio. The displacements of the plate
midsurface in the XI> X2 and X3 directions are denoted by u (Xl' X2), V (XI> X2) and W (XI> X2),

respectively. Subscripts on u, v or w denote partial differentiation with respect to the

coordinates XI or X2, e.g. Wl2 = 00
2

; . The extensional strains at the midsurface of the
plate are given by X I X 2

The strains in the beam are denoted by Yll(XI> X2, X3), Ydxl> X 2, X3) and Y13(XI> X2, x 3) and
are related to the displacements by eqns (9) and (10) of Danielson and Hodges (1988),
which upon invoking assumption (iv) are transformed into

_ 1 2 I 2
rll = Ell +(E12 +eI2)<P3- EI3<P2+ 2<P2+ 2 <P3

I I
rl2 = E12 - 2E1l <P3, 1'l3 = El3 + 2E1I <P2

I 1
Ell =ell-X3 Wll+ AW lI2, E l2 =eI2-2x3WI2+2A2WI2

I I I
E I3 =2X2W12+2A3~V12+2AWIIWI2

1 1 1
<P2 = -2X2W12+2A.3W12-2lwll~V12

I 1
<P3 = -2X3W12-2A2W12'

Here A(X2' x 3) is the Saint-Venant warping function for the beam cross-section; subscripts
on Adenote partial differentiation with respect to X 2 and X 3. Bars over a symbol denote its
value at the beam axis, e.g. the axial displacement of the beam centroid is a (Xl) - CWI(XI),

Substituting these relations into (l) and neglecting higher than cubic terms in the
displacements (these are not needed in our subsequent analysis), we obtain a lengthy
expression for the potential energy which forms the basis for our subsequent analysis.
Among all the functions satisfying the geometric or natural boundary conditions, the one
which causes the potential energy to be a minimum is the equilibrium state. We suppose
that the outer edges of the plate are free to displace in the horizontal plane but are restrained
in the vertical direction, so the geometric boundary conditions are

w (0, X2) = W (a, X2) = o.

Note that the case of simply supported edges is obtained by setting M = 0.

(2)

3. PREBUCKLING SOLUTION

The prebuckling equilibrium state is denoted by (u, w). It follows from assumptions
(ii)-(v) that the potential energy in the prebuckling state is
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[

0 0 fa [E(A+tb)Ui (bD+EI22 )wL
P u w] = + -----

, 0 2 2

Here 122 is the moment of inertia of the beam section about the x2-axis

122 = fr . xj dX2dx3 •

Jbeam :o.ectlOn

The prebuckling displacements are determined by the variational equation

<5 P = O.

Taking the variation of (3), and integrating by parts with respect to x], we obtain the
differential equations

(bD+ EI22 hvllll - EAc UII I -pb = 0, - EAnv11 +E (A + tb)uI +O"(A + tb) = 0 (4)

and boundary conditions

atx = Oandx = a: (bD + EI22 ) wII-EAcu l -0" Ac+Mb = O.

The solution to the linear boundary value problem (2), (4), (5) is

(5)

(6)

(7)

Note that (6)-(7) reduce in the case 122 = A = 0 to the well-known exact solution for an
isolated wide plate, and in the case t = 0 to the well-known exact solution for an isolated
beam.

4. BUCKLING SOLUTION

According to the energy criterion of elastic stability, the prebuckling equilibrium state
is stable if and only if the energy functional which represents the increase of the total
potential energy in a displacement field to some slightly adjacent state (IV+W) is non­
negative:

P[w+W]-P[w] ~ O. (8)

Since the prebuckling state is an equilibrium state, the terms in (8) which are linear in the
incremental displacement W must vanish. It follows that the terms Q [w] in (8) which are
quadratic in the incremental displacement must be non-negative:

Q[w] ~ O.

The critical case of neutral equilibrium occurs when there exists a buckling mode Wer

satisfying
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Q [Wer] = 0

Q [W i= Wer] > O.
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(9)

(10)

The eigenvalues (Ten Per and Mer which render (9) zero are the critical buckling loads.
From the first integral in (1) and assumption (vi), the quadratic functional for the

plate is

From the remaining integrals in (1), the quadratic functional for the beam is

(12)

Here I is the polar moment of inertia about the xl-axis, J is the Saint-Venant torsion
constant, and Hj, Hz, H3 are constants defined by the following integrals over the beam
cross-section:

I=fr . ~~+~)~Z~3
Jbeam sectlon

J = fr . [(XZ +A3)Z + (X3- Az)Z] dxz dX3Jbeam sectlon

HI = fr AZdxz dX3Jbeam section

Hz = fr . [X3(X~+X~-A~-),~)+2)_(xz+A3)]dxzdx3
Jbeam sectLon

H 3 =~fr . X3[(Xz-A3)z+(X3+Az)z+2(X~+X~-A~-AD]dxzdx3'
Jbeam section

The total quadratic functional for the plate plus the beam is the sum of (10) and (11).
Next, we calculate the cross-section properties for a beam composed of a thin web and

a thin bottom and top flange. The web has thickness tw and height hw ; the bottom flange
has thickness tb and width hb ; the top flange has thickness trand width hr. The Saint-Venant
warping function for this thin-walled cross-section is

j
XZ(2hW + tr- x 3

). = XZX3

-XZX 3

Using approximation (viii) we obtain

flange

web

bottom flange
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t~hb t~hw tl hrJ=-+-+-
3 3 3

In accordance with approximation (vii) and the boundary conditions (2) and (5), we
represent the incremental buckling displacement by the following shape (an arbitrary
multiplicative constant has been set equal to 1):

. mnx] . nX2
W = sln-a-sIllb , m = 1,2,3, .... (13)

Substitution of this buckling mode into (II) plus (12) and application of the inequality
(10) leads finally to

bD (mb a)2 n
2
m

2
EH]+- -+- + +GJ

2 a mb a2

(Jer ~----------------------------

tb3

1+­
2n2

(14)

Here m is taken to be the integer which gives the lowest value of (Jer in (14). Note that (14)
reduces in the case tb = tw = tr = 0 to the well-known exact solution for an isolated plate,
in the case Pcr = Mer = t = 0 to our previous exact solution for an isolated beam [see
formula (28) of Danielson et al. (1990)], and in the case Per = Mer = 0 to formula (87)
(with (J';be = «(Je)';be and I.,g2+r :::; HI) of Adamchak (1979).

5. CLAMPED EDGES

In this section we consider the clamped case when the bending moment M is not
prescribed, but the rotation at the edges is completely restrained. Then the additional
geometric boundary conditions are

(15)

Note that in this case each material particle on an edge cross-section is totally restrained
from any motion at the buckling point.
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The prebuckling solution to the linear boundary value problem (2), (4), (15) is (6) and

(16)

Note that (6) and (16) reduce in the case 122 = A = 0 to the well-known exact solution for
an isolated wide plate, and in the case t = 0 to the well-known exact solution for an isolated
beam.

In accordance with approximation (vii) and the boundary conditions (2) and (15), we
now represent the incremental buckling displacement by the following shape:

(
mnxI) . nX2w = I-cos-

a
- slOb' m = 2,4,6, .... (17)

Substitution of this buckling mode into (II) plus (12) and application of the inequality
(10) leads finally to

2 ( lAc \.,

aEH3-A+tbrer bD[(mb a)2 2a2l n2m2EH I----------+- -+- +-- +---+GJ
2 2[ E ( A2c2 )l 2 a mb m

2
b

2
a

2

4n m D + b III - A + tb
(Jcr :::; ----------------------- --------

tb 3

1+­
2n2

(18)

Note that (18) reduces in the case Per = t = 0 to our previous exact solution for an isolated
beam [see formula (28) of Danielson et al. (1990)].

6. IMPERFECTIONS

In this section we suppose that the structure has an initial normal deflection in the
shape of the prebuckling normal displacement caused by the pressure p. Specifically, when
M is prescribed on the edges, the initial normal deflection is

16x 1(a-xd(a 2 +ax 1 -xi) w
5a4

while for clamped edges the initial normal deflection is

We also assume that the amplitude W of the initial displacement is less than the
maximum thickness of the structure. Then the prebuckling displacements are still given by
our previous solutions (6)-(7) or (16), and the quadratic functional Qplate is still given by
(11). The only effect of this prebuckling deflection is to create a new term in Qbeam which is
the same as the middle integral in (12) with the prebuckling normal displacement replaced
by the initial displacement, and we can use our previous calculations to evaluate this
integral.



1326 D. A. Danielson

We thereby find that the effect of this imperfection is to add an additional term to our
previous formula for (ler:

M case:

(19)

clamped case:

(20)

Note that for an asymmetrical structure torsional deformation of the stiffeners may
initiate upon application of the slightest load, so bifurcation may not be able to be used as
the buckling criteria [see Ostapenko and Yoo (1988)].

7. RESIDUAL STRESS

The simplest way to account for residual stress is to assume that the plate is subject to
a uniform compressive residual stress S, while the beam is subject to a counterbalancing
distribution of residual stress (lr(x2, x 3) [see Hughes (1983)]. The only effect of this residual
stress is to create a new term in Qplatc which is the same as the last integral in (11) with (l
replaced by S. Note that the analogous term in Qbeam is zero because 11"'(X,) = 0 for the
assumed mode shapes (13) and (17) :

We thereby find that the effect of this residual stress is to add an additional term to
our formulas for (lcr:

(21)

8. CONCLUSIONS

Simple analytical formulae that include the effects ofcombined loading, various bound­
ary conditions, imperfections and residual stress do not appear to exist in the literature. As
an example of the numerical predictions of our formulae, let us assume the following typical
parameter values [taken from Smith (1975)] :

E = 30,000 ksi t b = 0

V = 0.3 hb = 0

a = 48 in tw = 0.28 in
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b = 24in

1=0.31in

hw =5.5in

If = 0.56in

hf =3.1in.

For this example, the formulae (14), (19), (21) and (18), (20), (21) reduce to:
M case (m = 1):

(Jer = 49+60per+ 0.45Mer +55W-0.76S;

clamped case (m = 2) :

(Jer = 105+6.6per+30W-0.76S.

(22)

(23)

The collapse loads of (Jer = 27.8 psi (Pcr = 0) and (Jer = 27.1 psi (Per = 0.015 ksi) measured
by Smith (1975) on ship grillages may be accounted for by choosing appropriate values of
Men Wand Sin (22) or (23).

We have made an attempt to verify the accuracy of some of the approximations upon
which our analysis is based. For instance, in the M case, we included the effect of
beam cross-sectional deformation by allowing the web to undergo a lateral buckling dis­
placement

where C1 and C2 are constants determined by minimizing the critical axial stress (Jer' For
the parameter values listed above, this effect turned out to be negligible. It is possible to
invent unusual cases in which the cross-sectional deformation is of importance, but for
most practical dimensions the assumption of a rigid cross-section seems acceptable.

For another instance, in the clamped case, we added together the m = 2 and m = 4
normal buckling displacements (17) :

[
2JP':1 ( 4nXl)J nX2

IV = l-cos-
a

- +C3 l-cos-
a

- sinb'

where C3 is a constant determined by mmlmlzmg the critical axial stress (Jer' For the
parameter values listed above, this effect also turned out to be negligible. For most practical
dimensions the assumption of a simple buckling mode seems acceptable.

At any rate, if we include the additional displacement functions needed for the above
effects, it doesn't seem possible to obtain simple formulae for the unknown coefficients or
buckling loads.
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